Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

نویسندگان

  • Yu-Xiang Wang
  • Veeranjaneyulu Sadhanala
  • Wei Dai
  • Willie Neiswanger
  • Suvrit Sra
  • Eric P. Xing
چکیده

We study parallel and distributed Frank-Wolfe algorithms; the former on shared memory machines with mini-batching, and the latter in a delayed update framework. In both cases, we perform computations asynchronously whenever possible. We assume block-separable constraints as in Block-Coordinate Frank-Wolfe (BCFW) method (Lacoste-Julien et al., 2013), but our analysis subsumes BCFW and reveals problemdependent quantities that govern the speedups of our methods over BCFW. A notable feature of our algorithms is that they do not depend on worst-case bounded delays, but only (mildly) on expected delays, making them robust to stragglers and faulty worker threads. We present experiments on structural SVM and Group Fused Lasso, and observe significant speedups over competing state-of-the-art (and synchronous) methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

We provide a self-contained convergence proof in this section. The skeleton of our convergence proof follow closely from Lacoste-Julien et al. (2013) and Jaggi (2013). There are a few subtle modification and improvements that we need to add due to our weaker definition of approximate oracle call that is nearly correct only in expectation. The delayed convergence is new and interesting for the b...

متن کامل

Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm

Estimating the most likely configuration (MAP) is one of the fundamental tasks in probabilistic models. While MAP inference is typically intractable for many real-world applications, linear programming relaxations have been proven very effective. Dual block-coordinate descent methods are among the most efficient solvers, however, they are prone to get stuck in sub-optimal points. Although subgr...

متن کامل

Stochastic block coordinate Frank-Wolfe algorithm for large-scale biological network alignment

With increasingly "big" data available in biomedical research, deriving accurate and reproducible biology knowledge from such big data imposes enormous computational challenges. In this paper, motivated by recently developed stochastic block coordinate algorithms, we propose a highly scalable randomized block coordinate Frank-Wolfe algorithm for convex optimization with general compact convex c...

متن کامل

Block-Coordinate Frank-Wolfe for Structural SVMs

We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves the same convergence rate as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this algorithm has the same low iterat...

متن کامل

Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full FrankWolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016